The Evolution of Diabetes Technology

Lissa Green RD, CDCES, LDN

Certified Insulin Pump Trainer

- Quick Review of Type 1 and Type 2 Diabetes
- Review of Insulin Delivery
- Glucose Monitoring
- Insulin pumps AID (Automated Insulin Delivery) Systems
- CGM therapy

Type1 and Type 2 Diabetes

Type 1 Diabetes

Type 2 Diabetes

- Once known as juvenile diabetes or insulin dependent diabetes
- Auto immune disease attacks the beta cells in pancreas
- Pancreas makes little to no insulin
- Life long dependency on insulin
- Estimated 5-10 % of population

- Pancreas does not make enough insulin
- Cells don't respond normally to insulin known as insulin resistance
- Treatment is lifestyle changes, oral medications and/or insulin therapy
- Estimated 90-95% of population

Insulin Delivery

- 1922 discovery of insulin
- Insulin vials and syringes
- 1981 insulin pens were introduced
- Easy to use injection devices used as MDI (multiple daily injection)
- Insulin pump therapy was introduced almost 40 years ago Introduced in 1970's
- CSII -continuous subcutaneous insulin infusion-only using short acting insulin

Glucose Monitoring

- SMBG- self monitoring blood glucose
- Frequent monitoring from capillary blood
- Smaller and easier to use glucometers developed in 1980's
- CGM- continuous glucose monitoring started in 1999
- Disposable sensors testing sugar in interstitial fluid at intervals of 1-5 minutes

Evolution of Diabetes Technology

- 1920's: Discovery of insulin, BD launched first specialized insulin syringe, commercial production of artificial insulin and Novo syringe launched
- 1950's: First disposable glass syringe
- 1960's: Invention of first insulin pump
- 1970's: Introduction of first commercial insulin pump
- 1980's: First insulin pen Novo pen
- 1990's: First generation of insulin pens launched and introduction of smart insulin pumps

Evolution of Diabetes Technology

- 2000's: Introduction of second generation of insulin pens and sensor augmented pumps emerged, first Omipod system FDA approved
- 2010: Introduction of artificial pancreas, Medtronic first hybrid closed loop system, first DIY artificial pancreas systems (closed looping) and FDA approved Medtronic AP 670 G inulin pump with Guardian 3 sensor
- 2017-2019: First Bionic Pancreas-iLet, Tandem Tslim X2 pump approved
- 2020's: Omnipod 5 system FDA approved, Tandem Tslim with control IQ, Tandem Mobi pump, Medtronic 780 G pump with Guardian 4 sensor and Beta Bionics i-Let pump FDA approved

Technology can be a wonderful thing...very useful tools to make living with diabetes more "normal". However, technology is only as good as the effort put into its use.

Insulin Pumps Think of an insulin pump as an external pancreas

Insulin Pump Basics

- Insulin pump
 - Battery operated device
 - Chargeable devices (like a cell phone)
 - Controlled by a computer chip
 - Reservoir/cartridge/pod filled with insulin
- Insulin Pumps are worn 24 hours per day

Insulin Pump Basics

- Pumps are little computerized machines that use rapid acting insulin.
- They can calculate the exact dose of insulin needed when they are told blood sugar and carbohydrates or by using sensor data.
- Are also programmed to be very individualized. Insulin delivered through a tiny catheter that looks and feels sort of like fishing line. "Sites" can be put anywhere an insulin injection can be given and must also be rotated every 2-3 days.
- Hold 180-300 units of insulin. Most are partially waterproof.
- Has safety features to prevent from accidentally giving extra insulin.

https://www.endocrineweb.com/guides/insulin/insulin-pump-overview

Insulin Pump Basics

- Only rapid acting insulin is used in insulin pumps (Novolog/Humalog/Fiasp/Admelog)
- Basal insulin/Bolus insulin
- **Basal Insulin** (takes the place of Lantus/Basaglar/Semglee/Tresiba/insulin glargine-yfgn)
 - Delivered in small doses every few minutes around the clock
 - Basal rates can be flexible
 - Can be adjusted based on lifestyle

• Bolus Insulin

- Administered at meals and snacks
- Correction of high blood sugars
- ICR and CF can be adjusted based on lifestyle

Insulin Delivery

- Insulin is stored in a reservoir/cartridge within the pump
- Insulin is delivered through a tube to an infusion set or through a pod
- Infusion sets are placed anywhere on the body that an injection can be delivered
- Inserted at a 45- or 90-degree angle
- 6-8 mm deep
- Placed manually or with insertion device

Pod pump

- Attached directly to the body
- No tubing

Presentation Title

Commitment Required for Successful Pumping

- Testing blood sugar AT LEAST 4 times a day if not wearing sensor.
- Changing site as instructed (minimum of every 3 days if not sooner)
- Be comfortable being "connected".
- Have realistic expectations of insulin pump use.
- Attend follow-up appointments with physician
- Have a back-up plan for site/pump failure.

UNRealistic Expectations of Pumping

- It is the CURE for diabetes.
- I can eat ANYTHING and ANY AMOUNT of anything I want whenever I want.
- I don't have to check my blood sugar as often.
- My blood sugars will be perfect.

Realistic Expectations of Pumping

- More flexibility with what to eat and when to eat.
- Tighter control of sugars while on pump.
- Expect to still have highs and lows.
- Usually takes 3-6 months to adjust to being "connected".
- Will help alleviate some of the burden of diabetes.

Pros and Cons of an Insulin Pump

Advantages of Pumping to Consider

- Eliminates daily injections.
- Match insulin requirements to lifestyle
- More accurate insulin delivery, which can improve glucose control (aka HgbA1c)
- More flexibility
- Less blood sugar fluctuations

Disadvantages of Pumping to Consider:

- Expense
- Potential for weight gain on a pump
- Some people don't like being attached
- Potential for DKA if bad site not caught quickly due to bent cannula or not inserted correctly

Insulin Pump Companies

Omnipod Tandem Beta Bionics Medtronic

Omnipod

- Pod holds 200 units of insulin. Minimum amount is 85 units
- No tubing
- Wear pod for up to 72 hours
- POD is waterproof for up to 25 ft. for 1hr.
- Omnipod 5 is a hybrid closed-loop system and uses Dexcom G6

https://diabeteseducatorscalgary.ca/devices/insulin-pumps/omnipod www.diatribe.org www.omnipod.com/healthcareproviders/dash

Omnipod Dash

Pod Inf

Presentation Title

Omnipod 5

www.diabetes-connections.co

OmniPod Dash

- Tubeless pump
- Pod
- PDM (Personal Diabetes Manager) or Controller
 - Settings
 - Meter
 - Communicates remotely with pump
- Easy to use
- Touch Screen

Omnipod 5

- Works with Dexcom G6
- Smart Adjust technology adjust insulin delivery based on Dexcom values every 5 minutes and predicts glucose 1 hour ahead
- Customizable target range between 110-150

Tandem T Slim

- Holds 300 units of insulin in a cartridge. Minimum amount is 75 units
- Links with Dexcom G6 & G7/ Libre 2Plus
- Rechargeable battery. Can use with phone app.
- NOT compatible with Apidra.
- Watertight up to 3 feet for 30 minutes
- Control IQ
- Tslim x 2
- Touch screen

Control IQ

180 -	🔷 🚺 Delivers	Delivers an automatic correction bolus if sensor glucose is predicted to be above 180 mg/dL
160 -	Increases 🚯	Increases basal insulin delivery if sensor glucose is predicted to be above 160 mg/dL
112.5	🔷 🖪 Maintains	Maintains active Personal Profile settings
70 -	B Decreases	Decreases basal insulin delivery if sensor glucose is predicted to be below 112.5 mg/dL
mg/dL	📀 🖸 Stops	Stops basal insulin delivery if sensor glucose is predicted to be below 70 mg/dL

- Control-IQ[™] advanced hybrid closed-loop technology is designed to help increase time in range (70– 180 mg/dL)*
- Uses Dexcom G6/ G7 CGM values to predict glucose levels 30 minutes in the future and adjust insulin delivery
- Also delivers an automatic correction bolus (up to one per hour) as needed for CGM readings >180 mg/dl

Tandem Mobi Worlds smallest Pump

- I phone controlled
- •200 unit insulin cartridge
- •Wireless charging
- •Remote software updates
- •Water resistant
- •Notifications for alerts and alarms
- •Ability to do a quick bolus from button on pump without using I phone
- •Compatible with Dexcom G6 CGM sensor (Dexcom G7 expected Quarter 2, 2024)*
- •Control IQ technology

- For patients with Type 1 Diabetes 6 years or older
- 180 unit cartridge for insulin (Humalog,Novolog/Fiasp)
- Option to choose a target of "usual 120", "less than usual 110" or "more than usual 130".
- <u>Must</u> wear Dexcom G6 or G7 for system to work
- The iLet makes 100% of the insulin dosing decisions based on CGM readings
- Uses infusion sets for insulin delivery

- Basal algorithm determines basal insulin requirements
- Adapts continuously to changing insulin needs
- No basal rates are programmed into system
- Develops and continuously updates basal rate profile for insulin delivery every 5 minutes

- Correction algorithm automatically adds insulin beyond basal insulin requirements
- Reduces insulin when needed to help protect against hypoglycemia
- Eliminates need for user to determine timing or size of correction dose
- Adapts continuously to changing needs
- Eliminates user error regarding "stacking insulin"

- Meal announcement algorithm eliminates the need to set or know insulin to carb ratios
- No Carb Counting. The iLet only needs an estimate of the carbs at a meal. 3 options: "Usual for me" "more than usual" or "less than usual".
- Gives meal doss customized to individual.
- Automatically adjusts amount of insulin given based on dosing history or similar, previous meal announcements

Medtronic 780 G

Medtronic 780 G Smart Guard Technology

- 780 G pump receives information from Guardian 4 sensor to calculate insulin adjustments
- Only the MiniMed[™] 780G system with Meal Detection[™] technology^{*} can automatically deliver correction[†] boluses of insulin without any work needed from you, as quickly as every 5 minutes.[§]
- Uses Guardian 4 sensor with transmitter
- Extended infusion set for 7day wear

Medtronic 780 G Smart Guard Technology

- Customized targets of 100,110 or 120
- Temporary target of 150 for exercise
- Auto corrections every 5 minutes when sensor reads >120 mg/dl
- Holds 300 units of insulin in reservoir
- Multiple, different infusion sets can be used
- Phone apps for patient and caregivers displays glucose, insulin and alerts

SmartGuard Auto Mode Shield

Pump Sites

- -Tiny cannula inserted under skin
- -Changed every 2-3 days
- -Connected to insulin source-cartridge, reservoir or pod
- -Can be inserted anywhere you can give an insulin injection

Today's CGM Options

Dexcom

Libre

Medtronic

How do CGMs work?

- Sensor is inserted under skin and measures interstitial glucose level (glucose between the fluid between cells)
- Transmitter wirelessly sends information to a monitor
- Blood draw is most accurate, then a fingerstick. However, all have a margin of error
- SG & BG should be similar
- Larger difference can be seen after meals or after a bolus, during exercise

Always use a FSBS for treatment decisions if your sensor doesn't match how you feel

Advantages of CGM Use

"Do I really not need to do fingersticks?"

- Although a lot of marketing suggests you never have to do finger sticks again, there are certain times you will need to fingerstick, such as:
- if CGM fails/falls off
- for calibration, if required
- to confirm a reading in question before making dosing decision

Thank you

Questions ????

Presentation Title